LC-MS/MS Analysis of Large Drug Panels in Urine Using Three Sample **Preparation Techniques**

Biotage

Stephanie J. Marin¹, Jillian Neifeld², Dan Menasco¹, Elena Gairloch¹ ¹Biotage LLC, Charlotte North Carolina, USA ²Solano County Bureau of Forensic Services, Fairfield, CA, USA

Overview/Introduction

Urine drug testing to support pain management is a mainstay of the clinical toxicology laboratory. Reduced reimbursement has continued to put increasing pressure on laboratories. Many toxicology labs are moving to larger drug panels to increase throughput and efficiency, while reducing turn-around-time and cost. Methods using LC-MS with 50 or more drugs and metabolites are increasingly common. These panels increase throughout and improve laboratory efficiency, but create many challenges. While "dilute and shoot" methods are easy and affordable, they can result in shortened LC column lifetimes and increased MS instrumentation downtime. Matrix effects can also effect sensitivity and overall method performance. Supported Liquid extraction (SLE) and Solid Phase Extraction (SPE) provide cleaner samples for LC-MS/MS and more robust clinical assays. Successful sample preparation method development requires understanding the retention mechanism of the analytes in the assay. The octanol-water partition coefficient (logP) and aciddissociation constant (pKa) of the compounds of interest are important properties that can guide sample preparation strategy and optimization of method conditions.

Methods

Three sample preparation methodologies were evaluated for 52 drug analytes:

Supported Liquid Extraction ISOLUTE® SLE+

- » Works for acidic, basic and neutral drugs
- » EtOAc, CH₂Cl₂ or MTBE for elution
- Addition of IPA can increase partitioning of more hydrophilic compounds

Polymeric Reversed Phase SPE EVOLUTE® EXPRESS ABN

- » More hydrophilic compounds will exhibit poor retention
- Organic wash must be carefully controlled

Mixed Mode Polymeric SPE EVOLUTE® EXPRESS CX

- » Reversed phase and cation exchange mechanisms
- Compounds can be retained by ion exchange and reversed phase
- » pH sample pretreatment controls ionization and retention
- » Wash steps must be carefully selected based upon retention mechanism
- » Must know retention mechanism of compounds!

Hydrolyzed urine specimens fortified with 52 drugs and metabolites from multiple drug classes were treated with acid or base and extracted using three sample preparation methodologies. Wash and elution solvents were optimized for each extraction protocol. Samples were analyzed on a Sciex 5500 triple quadrupole MS coupled to a Shimadzu Nexera LC and autosampler. Two transitions were monitored for each analyte. Recovery, matrix effect, and process efficiency were evaluated at 25, 50 and 100 ng/mL (Matuszewski BK et al, Anal. Chem. 75, 3019-3030, 2003). Average recovery and matrix effect for the quantitative MS/MS transition for each compound are reported in Table 3.

Extraction Parameters

Table 1: Extraction Methods										
	ISOLUTE SLE+	EVOLUTE EXPRESS ABN	EVOLUTE EXPRESS CX							
Specimen volume	200 μL									
Ammoniun acetate pH 4	200 μL									
enzyme	13 µL									
hydrolyze	55 °C for 30 minutes									
Sample Pretreatment	200 μL 0.1% NH4OH	200 μL 0.1% NH4OH	200 μL 4% H3PO4							
Condition	-	1 mL MeOH	1 mL MeOH							
Equilibrate	-	1 mL 0.1% NH4OH	1 mL 4% H3PO4							
Load (µL)	400 μL	0 μL entire pretreated sample								
Wash 1	-	1 mL 0.1% NH4OH	1 mL 4% H3PO4							
Wash 2	-	1 mL 10% MeOH in water	1 mL of 50% MeOH in water							
Dry	-	dried 5 min under nitrogen 40 psi								
Elute option 1	2 x 0.75 mL 9	0:10 CH2Cl2:2-propanol	2 x 0.75 mL 78:20:2 CH2Cl2:2-propanol:NH4OH							
OR Elute option 2	-	•	OR 2 x 0.75 mL 78:20:2 CH2Cl2:MeOH:NH4OH							
Dry	-	dried under nitrogen at 40°C	dried under nitrogen 40°C							
Reconstitute	150 μL 90:10 0.1% FA in water:0.1% FA in MeOH									

Methods (continued)

LC Parameters

Mobile phase A (MPA): 0.1% formic acid (FA) in water Mobile phase B (MPB): 0.1% FA in MeOH, gradient separation Flow Rate: 0.6 mL/min

Column: Restek RAPTOR biphenyl 2.7 µm, 50 x 3.0 mm LC: Shimadzu UPLC

Injection volume: 2 µL

Results and Discussion

Supported Liquid Extraction ISOLUTE® SLE+

- » 80 to >90% recovery for most compounds except:
- » 40-80% recovery for norhydrocodone, morphine and amphetamine
- » 36% recovery for zolpidem-phenyl-4-COOH
- » <20% recovery pregabalin and gabapentin

Polymeric Reverse Phase SPE EVOLUTE® EXPRESS ABN

- » 80 to >90% recovery for many compounds
- » Poor recovery for opiates and some opioids:
- » 30-70% for 6-AM, hydrocodone, norhydrocodone, codeine, dihydrocodeine, oxycodone, norbuprenorphine, norfentanyl, tapentadol and n-desmethyltapentadol
- » ≤10% morphine, hydromorphone, oxymorphone
- » 27% recovery for naloxone
- » 56% recovery 7-aminoclonazepam
- » Lower recoveries for 7-aminoclonazepam, amphetamine and methamphetamine and
- » 70-80% recovery 9-carboxy-THC, amitriptyline and nortriptyline
- » <20% recovery pregabalin and gabapentin</p>

Mixed Mode Polymeric Reverse Phase Cation Exchange SPE **EVOLUTE® EXPRESS CX**

- » 80 to >90% recovery for most compounds using CH₂Cl₂:2-propanol:NH₄OH except:
- » Poor recovery for barbiturates
- » 30% recovery for ritalinic acid
- » ≤20% recovery pregabalin, gabapentin, meprobamate and carisoprodol
- » Lowering organic wash to 10% improved recovery of carisoprodol and barbiturates
- » Recovery improved for pregabalin (100%), meprobamate (30%), gabapentin and ritalinic acid (80%) and using CH₂Cl₂:MeOH:NH₄OH, but samples were not as clean

Conclusions

- » Supported liquid extraction and mixed-mode SPE worked best for the most compounds
- » Compromises in recovery and sample cleanliness are necessary with large drug panels in urine that have analytes with very different properties
- » Knowing the logP and pKa of your compounds is essential for successful method development

Table 2. Summary of Sample Preparation Results

Drug Class		SLE+	ABN	Comment			
Opiates		++	+	low recoveries for most drugs on ABN			
Opioids		+++	+	low recoveries for a few drugs on ABN			
Benzodiazepines		+++	‡	most variability, 7-AC, zolpidem metabolite lower			
Barbiturates		+++	+++	recovery on CX requires 10% organic wash			
Stimulants		++	‡	lower recovery ritalinic acid for most options			
Illicit Drugs	+++	+++	‡				
Pregabalin and Gabapentin				must add MeOH to elution solvent on CX - samples not as clean			
Carisoprodol and Meprobamate		+++	‡	lower organic wash on CX for meprobabmate			

Table 3: Compound Properties, Percent Average Recovery and Matrix Effect

	Properties			Average Recovery/Matrix Effect					
Compound				SLE+		ABN		СХ	
	logP	pKa 1	pKa 2	REC	ME	REC	ME	REC	ME
11-Nor-delta-9-carboxy-THC	5.1	4.2	9.3	90%	62%	78%	161%	87%	63%
6-monoacetylmorphine	0.6	8.7	9.7	82%	84%	35%	91%	102%	92%
7-aminoclonazepam	0.5	3.0	5.0	68%	62%	56%	54%	82%	78%
alpha-hydroxy-alprazolam	1.5	5.0	13.7	100%	108%	92%	142%	93%	106%
alprazolam	3.0	5.1	18.3	102%	107%	89%	147%	93%	107%
amitriptyline	4.8	9.8		94%	76%	80%	86%	92%	81%
amphetamine	1.8	10.0		66%	74%	<20%	86%	132%	42%
benzoylecgonine	-0.6	3.2	9.5	103%	115%	130%	107%	105%	101%
buprenorphine	3.6	9.6		90%	93%	76%	153%	89%	97%
butalbital	1.6	8.5		105%	117%	103%	71%	<20%	87%
carisoprodol	1.9	15.0		108%	134%	97%	144%	21%	106%
chlordiazepoxide (Librium)	3.1	6.5		92%	86%	111%	91%	119%	51%
clonazepam	3.2	1.9	11.7	145%	160%	116%	79%	120%	574%
cocaine	2.3	8.9		87%	85%	75%	99%	105%	80%
codeine	1.3	9.2		100%	99%	29%	92%	109%	89%
diazepam	3.1	2.9		100%	105%	86%	201%	103%	94%
dihydrododeine	1.6	9.3		93%	90%	29%	79%	110%	82%
EDDP	4.6	9.6		116%	85%	115%	100%	134%	63%
fentanyl	3.8	8.8		101%	83%	94%	111%	107%	79%
gabapentin	-1.3	4.6	9.9	<20%	79%	<20%	107%	<20%	96%
hydrocodone	2.0	8.6		100%	100%	60%	94%	110%	87%
hydromorphone	1.6	8.6	10.1	94%	97%	10%	96%	112%	77%
ketamine	3.4	7.5		109%	118%	77%	86%	113%	48%
lorazepam	3.5	10.6	12.5	97%	102%	85%	160%	93%	96%
MDMA	1.9	10.1	IL.O	93%	90%	55%	85%	100%	89%
meperidine	2.5	8.2		111%	111%	96%	109%	109%	66%
meprobamate	0.9	>12.0		99%	131%	112%	90%	<20%	105%
methadone	5.0	9.1		125%	80%	98%	109%	102%	86%
methamphetamine	2.2	10.2		102%	82%	32%	83%	141%	35%
morphine	0.9	9.1	10.3	47%	97%	<10%	104%	112%	61%
naloxone	1.6	7.8	10.7	105%	88%	27%	88%	127%	80%
n-desmethyltapentadol	2.3	10.6	10.7	78%	101%	44%	101%	93%	92%
norbuprenorphine	2.3	10.5		113%	94%	60%	172%	97%	100%
nordiazepam	3.2	2.9	12.3	106%	129%	84%	222%	98%	88%
norfentanyl	1.4	10.0	12.3	82%	103%	56%	89%	109%	89%
norhydrocodone	1.6	10.0		76%	89%	43%	95%	102%	88%
norketamine	2.9	7.5		105%	102%	50%	92%	108%	54%
normeperidine	2.1	9.3		104%	98%	77%	107%	103%	91%
nortriptyline	4.4	10.5		100%	71%	71%	87%	90%	80%
oxazepam	2.9	10.6	12.5	114%	104%	84%	189%	106%	105%
oxycodone	1.0	8.1	12.5	104%	79%	45%	77%	113%	79%
oxymorphone	0.8	8.2	10.0	96%	88%	<10%	89%	122%	71%
phencyclidine	4.5	10.6	10.0	118%	88%	96%	118%	106%	51%
phenobarbital	1.4	8.1		103%	111%	94%	72%	<20%	103%
pregabalin	-1.4	4.8	10.2	<20%	96%	<20%	103%	<20%	94%
ritalinic acid	-0.4	3.7	10.2	<20%	116%	47%	105%	30%	106%
secobarbital	2.0	8.5	10.1	101%	110%	101%	89%	30%	105%
	3.0	10.2		101%	91%	65%	80%	106%	85%
tapentadol	2.8	4.7	-	108%	126%	90%	237%	105%	109%
temazepam tramadol	2.8	9.3		112%	83%	90%	79%	101%	79%
					99%				
zolpidem	3.0	5.7		121%		100%	126%	108%	99%
zolpidem-4-phenyl-COOH	0.6	3.4	5.7	36%	97%	90%	122%	64%	98%