# U.S. EPA Method 625.1 – New Method and New Instrumentation for Semi-volatiles with Solid **Phase Extraction**



Michael Ebitson<sup>1</sup>, Alicia J. Cannon<sup>1</sup>, Melissa Lever<sup>1</sup> <sup>1</sup>Biotage, 16 Northwestern Drive, Salem, NH 03079, USA.

### Introduction

US EPA method 625 is used to determine acidic, basic, and neutral semi-volatile organic compounds (SVOC) in municipal and industrial wastewater. Revision A of this method is applied to a total possible list of 364 compounds that include; polynuclear aromatic hydrocarbons, chlorinated hydrocarbons, pesticides, phthalate esters, organophosphate esters, nitrosamines, haloethers, aldehydes, ethers, ketones, anilines, pyridines, quinolones, aromatic nitro compounds, and phenols.

The current method outlines an extraction procedure utilizing either liquid-liquid extraction (LLE) or continuous liquid-liquid extraction (CLLE), followed by sodium sulfate drying. While it is not specifically outlined in the method, solid phase extraction (SPE) may be utilized for sample preparation, provided the Alternate Testing Procedure (ATP) process is followed.

Solid phase extraction is a well-established technique for automating traditional acid-base-neutral LLE methods; however, the method typically involves a multi-pass procedure where the solutions must be passed through the extraction media following 2 separate pH adjustments.

The work presented here demonstrates successful sample preparation using an automated, one-pass SPE system. In this configuration, all analytes of interest are extracted with a single pH adjustment. The success of the extraction is due to the use of a mixed mode SPE disk which contains several functionalities.

### **Experimental**

#### Conditions

All samples were prepared for analysis using the workflow illustrated in the figure below. Sample extractions were performed on the Biotage® Horizon 5000 (previously known as the SPE-DEX 5000). The DryVap™\* In-line Drying and Concentration System from Biotage was used for solvent drying following the extraction.

\*The DryVap™ system has been discontinued. We recommend using the TurboVap® evaporation systems for





**Figure 1.** Extraction and drying systems used for sample preparation: the Biotage® Horizon 5000 (previously known as the SPE-DEX 5000) (left) and the DryVap™ System (right).

### Conditions

All samples were prepared and analyzed according to the conditions listed in Table 1 below.

| <b>Extraction Parameters</b>    |                                                                                                        |  |  |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Parameter                       | Value                                                                                                  |  |  |  |  |  |
| Extraction System               | Biotage® Horizon 5000 Automated Extraction System                                                      |  |  |  |  |  |
| SPE Disk                        | Atlantic® 8270 One Pass SPE Disk (47 mm)                                                               |  |  |  |  |  |
| Disk Holder                     | Fast Flow Disk Holder                                                                                  |  |  |  |  |  |
| Carbon Cartridge                | 8270 Max Detect Carbon Cartridge                                                                       |  |  |  |  |  |
| Drying/Concentration Parameters |                                                                                                        |  |  |  |  |  |
| Parameter                       | Value                                                                                                  |  |  |  |  |  |
| Solvent Drying System           | DryVap <sup>™</sup> In-line Drying and Concentration System with DryDisk <sup>®</sup> Separation Disks |  |  |  |  |  |
| Dry Volume                      | 200 mL                                                                                                 |  |  |  |  |  |
| Heat Power                      | 5                                                                                                      |  |  |  |  |  |
| Heat Timer                      | OFF                                                                                                    |  |  |  |  |  |
| Nitrogen Sparge                 | 20 psi                                                                                                 |  |  |  |  |  |
| Vacuum                          | -7 in. Hg                                                                                              |  |  |  |  |  |
| GC/MS Parameters                |                                                                                                        |  |  |  |  |  |
| Parameter                       | Value                                                                                                  |  |  |  |  |  |
| GC/MS System                    | Agilent Technologies 6890 GC                                                                           |  |  |  |  |  |
| GC/MS Detector                  | 5973 Mass Selective Detector                                                                           |  |  |  |  |  |
| Injection Volume                | 1 μL                                                                                                   |  |  |  |  |  |
| Inlet Temperature               | 280 °C                                                                                                 |  |  |  |  |  |
| Mode                            | Splitless                                                                                              |  |  |  |  |  |
| Gas Type                        | Helium                                                                                                 |  |  |  |  |  |
| GC Column                       | Zebron™ ZB-Semivolatiles                                                                               |  |  |  |  |  |
|                                 | Set to 45 °C, hold for 1 min                                                                           |  |  |  |  |  |
| Oven Program                    | Ramp from 45 °C to 270 °C, at 15 °C/min                                                                |  |  |  |  |  |
| 140 7 14 11                     | Ramp from 270 °C to 318 °C, at 6 °C/min                                                                |  |  |  |  |  |
| MS Ions Monitored               | Masses 35-550 were scanned                                                                             |  |  |  |  |  |

**Table 1.** Extraction, drying and analysis conditions for the analysis of wastewater samples.

### Samples

Nine water samples were prepared for analysis. The samples consisted of wastewater, seawater and effluent water to demonstrate proof of concept in a wide range of sample matrices. The sample names and descriptions are listed in Table 2 below.

| Sample Name                 | Description                                        |
|-----------------------------|----------------------------------------------------|
| Synthetic wastewater        | Prepared following ASTM D 5905 - 98                |
| Synthetic seawater          | Prepared from Instant Ocean, a commercially        |
|                             | available product closely matching the             |
|                             | composition of seawater                            |
| POTW Influent 1             | Geographical coverage of the southern section      |
|                             | including residential and treated industrial waste |
| POTW Effluent               | Effluent from a large treatment plant              |
| POTW Effluent plus O&G      | To ensure the criterion is met, the effluent was   |
| > 20 mg/L                   | spiked with 24 mg/L of Oil & Grease Standard       |
| Industrial Effluent 1-RC1   | PART 446—Paint formulating point source            |
|                             | category                                           |
| Industrial Effluent 2-RC2   | PART 437— The centralized waste treatment          |
|                             | point source category                              |
| Industrial Effluent 3-ES    | PART 432—Meat and poultry products point           |
|                             | source category                                    |
| Industrial Effluent 4-Alpha | Part 414 - Organic Chemicals, Plastics and         |
|                             | Synthetic fibers (OCPSF)                           |

**Table 2.** Sample names and descriptions.

# **SPE Protocol**

### **Outline**

- Precondition both the SPE disk and the carbon cartridge
- Acidify the sample to pH 2
- Pass the acidified sample through the disk and cartridge to retain analytes on both
- Elute acidic and neutral semivolatile organic analytes from the disk using acetone and methylene chloride
- Elute remaining organic bases from the disk using acetone, 1% ammonium hydroxide and methylene chloride
- Remove the disk holder and elute the light-end semi-volatile organic analytes from the carbon cartridge using acetone and methylene chloride

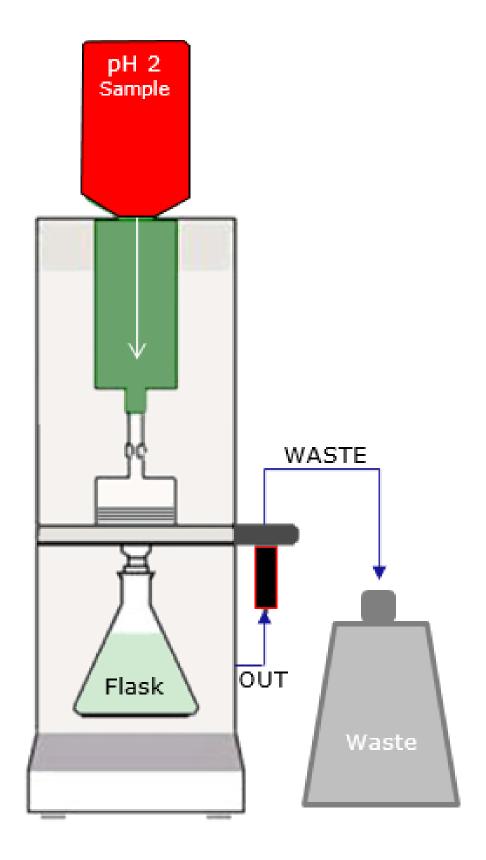



Figure 2. Schematic representation of SPE protocol using automated SPE with a one-pass configuration.

### **Results and Discussion**

Prior to analyzing samples, the laboratory performed all necessary experiments to generate data demonstrating compliance with EPA Method 625.1. All results indicated that the laboratory met all demonstration of compliance (DOC) requirements (data not shown).

Following compliance verification, a series of synthetic water samples were analyzed. Results for one of the synthetic wastewater samples are listed in Table 3. Analyte results that are listed as measured spikes are from Table 3 in Method 625.1 and do not have official acceptance criteria. For those analytes, it is the responsibility of each laboratory to generate their own acceptance data.

Superscripts in Table 3 highlight those analytes that were eluted off the carbon cartridge or off the ion exchange portion of the Atlantic® One-Pass SPE disk. All other analytes were eluted from the One-Pass SPE disk under acidic conditions.

All measured analyte concentrations and relative percent difference (RPD) results were within the passing criteria for EPA Method 625.1.

## Conclusions

- A robust workflow was developed for extracting a full suite of analytes in compliance with EPA Method 625.1
- Data collected for synthetic water samples indicated that analyte recoveries were within the acceptable limits of Method 625.1
- ▶ The use of the Atlantic® One Pass Disk, combined with the carbon cartridge, allowed for the extraction of semi-volatile and light-end semi-volatile organic compounds under acidic and neutral conditions, with a single pass of the solution
- The automation of the extraction improved the accuracy and reproducibility of the data, which improves the ease with which a laboratory can maintain EPA compliance
- Additional solid phase extraction benefits include: reduced solvent usage, reduced hazardous waste generation, reduced exposure to solvent vapors and reduced solvent evaporation and recollection requirements

### **Results and Discussion**

| Analyte                             | Avg Measured<br>Conc (µg/L) | Acceptable<br>Range (µg/L) | RPD<br>Limit | Analyte                          | Measured Spike<br>Conc (µg/L) | Measured Spike<br>Conc (µg/L) | RPD   |
|-------------------------------------|-----------------------------|----------------------------|--------------|----------------------------------|-------------------------------|-------------------------------|-------|
| 1,2,4-Trichlorobenzene              | 49.04                       | 44-142                     | 50           | 1,2,4,5-Tetrachlorobenzene*      | 59.02                         | 55.11                         | 3.43  |
| 2,4-Dinitrotoluene                  | 76.57                       | 39-139                     | 42           | 1,3,5,-Trinitrobenzene*          | 45.95                         | 41.48                         | 5.11  |
| 2,6-Dinitrotoluene                  | 78.08                       | 50-158                     | 48           | 1,3-Dinitrobenzene*              | 77.48                         | 74.87                         | 1.71  |
| 2-Chloronaphthalene                 | 64.25                       | 60-120                     | 24           | 1,4-Naphthoquinone*              | 55.16                         | 54.26                         | 0.82  |
| 3,3'-Dichlorobenzidine <sup>a</sup> | 41.09                       | D-262                      | 108          | 1-Naphthylamine*                 | 50.35                         | 49                            | 1.36  |
| 4-Bromophenyl phenyl ether          | 75.46                       | 53-127                     | 43           | 2,3,4,6-Tetrachlorophenol*       | 86.75                         | 83.82                         | 1.72  |
| 4-Chlorophenyl phenyl ether         | 72.32                       | 25-158                     | 61           | 2,4,5-Trichlorophenol*           | 79.16                         | 76.03                         | 2.02  |
| Acenaphthene                        | 68.17                       | 47-145                     | 48           | 2,6-Dichlorophenol*              | 80.06                         | 77.36                         | 1.72  |
| Acenaphthylene                      | 69.43                       | 33-145                     | 74           | 2-Methylnaphthalene*             | 61.72                         | 60.31                         | 1.16  |
| Anthracene                          | 74.38                       | 27-133                     | 66           | 2-Naphthylamine*                 | 67.09                         | 20.23                         | 53.66 |
| Benz(a)anthracene                   | 75.73                       | 33-143                     | 53           | 2-Nitroaniline*                  | 79.7                          | 77.05                         | 1.69  |
| Benzo(a)pyrene                      | 73.99                       | 17-163                     | 72           | 2-Picoline*                      | 28.22                         | 30.72                         | 4.24  |
| Benzo(b)fluoranthene                | 75.72                       | 24-159                     | 71           | 3,3'-Dimethylbenzidine*          | 4.03                          | 3.04                          | 14.00 |
| Benzo(ghi)perylene                  | 75.08                       | D-219                      | 97           | 3-Methylcholanthrene*            | 76.67                         | 71.44                         | 3.53  |
| Benzo(k)fluoranthene                | 75.68                       | 11-162                     | 63           | 3-Nitroaniline*                  | 68.52                         | 67.74                         | 0.57  |
| Bis(2-chlorethoxy)methane           | 75.90                       | 33-184                     | 54           | 4 Aminobiphenyl*                 | 32.18                         | 30.11                         | 3.32  |
| Bis(2chloroisopropyl)ether          | 65.00                       | 36-166                     | 76           | 4-Chloroaniline*                 | 54.28                         | 56.11                         | 1.66  |
| Bis(2-ethylhexyl) phthalate         | 87.59                       | 8-158                      | 82           | 4-Nitroaniline*                  | 60.13                         | 59.59                         | 0.45  |
| Chrysene                            | 75.09                       | 17-168                     | 87           | 4-Nitroquinoline-1-oxide*        | 11.48                         | 9.3                           | 10.49 |
| 2,4,6-Trichlorophenol               | 78.33                       |                            |              | 5-nitro-o-toluidine*             | 73.13                         | 71.42                         | 1.18  |
| 2,4-Dichlorophenol                  | 78.66                       | 39-135                     | 50           | 7,12-Dimethylbenz(a)-anthracene* | 75.6                          | 71.17                         | 3.02  |
| 2,4-Dimethylphenol                  | 80.11                       | 32-120                     | 58           | Acetophenone*                    | 66.76                         | 68.85                         | 1.54  |
| 2,4-Dinitrophenol                   | 86.95                       | D-191                      | 132          | Acetylaminofluorene*             | 83.57                         | 79.91                         | 2.24  |
| 2-Chlorophenol                      | 72.64                       | 23-134                     | 61           | Aniline*                         | 49.11                         | 54.18                         | 4.91  |
| 2-Nitrophenol                       | 68.86                       | 29-182                     | 55           | Benzoic acid*                    | 117.29                        | 121.83                        | 1.90  |
| 4,6-Dinitro-2-methylphenol          | 76.27                       | D-181                      | 203          | Benzyl alcohol*,b                | 73.73                         | 75.64                         | 1.28  |
| 4-Chloro-3-methylphenol             | 83.33                       | 22-147                     | 73           |                                  |                               |                               |       |
| 4-Nitrophenol                       | 85.60                       | D-132                      | 131          |                                  |                               |                               |       |
| Pentachlorophenol                   | 97.61                       | 14-176                     | 86           |                                  |                               |                               |       |
| Phenol <sup>b</sup>                 | 46.58                       | 5-120                      | 64           |                                  |                               |                               |       |

**Table 3.** Analyte measurements for a synthetic water sample after demonstrating laboratory compliance with Method 625.1 requirements.

<sup>a</sup>Eluted with ion exchange conditions using the Atlantic<sup>®</sup> One-Pass SPE Disk

<sup>b</sup>Eluted with the carbon cartridge \*No official acceptance criteria in Method 625.1