Extraction of a full suite of semi volatile compounds from drinking water using automated disk solid phase extraction following Chinese method SL 392-2007

By Biotage

Introduction


Drinking water is a significant source of environmental exposure, especially for small children. Countries around the world have put regulations in place to monitor drinking water quality for a wide range of hazardous compounds. Methods such as SL 392-2007 in China, the EN methods in Europe and US methods such as method 525.2 cover a large suite of analytes of concern. They can be effectively extracted using solid phase extraction (SPE) disks and using GC/MS for detection.

Chinese Method SL-392-2007 describes a procedure to determine a full suite of low concentration semi volatile organic compounds in drinking water using solid phase extraction (SPE) using a cartridge format.1 The same sorbent material is avail- able in disk format and provides advantages for larger water volumes and whole water, which may contain particulates.

Because of the increased surface area as shown in Figure 1, the water passes through the disk more quickly and particles do not clog the system as easily. This application note will demonstrate the performance that can be obtained using a disk-based SPE method and following the requirement’s of method SL 392-2007.

biotage-an116-hor-figure1-disk-and-cartridge-formats

Figure 1. Disk and Cartridge formats next to each other

 

Instrumentation

  • Biotage® Horizon 5000 Automated Extractor
  • DryVap™* Concentration System
  • DryDisk® Separation Membranes
  • Atlantic® C18 High Capacity Disk


The Biotage® Horizon 5000 was used for extraction of the analytes from the water samples. The Biotage® Horizon 5000 is an automated system that conditions the solid phase extraction disk, loads the sample through the disk, rinses the sample bottle and elutes the sample all without user intervention. The 47-mm disk holder was used with C18 disks . High capacity disks were used because some of the more water soluble compounds are better retained and suffer less breakthrough with this disk. Ethyl acetate and methylene chloride were used for elution.


The method run on the Biotage® Horizon 5000 is shown in Table 1. The method information, run time, sample identification and other information are stored in a file when the sample is run. This can be printed in a report or exported to the laboratory LIMS for archiving.
biotage-an114-figure1-Biotage®-Horizon-5000

Figure 2. Biotage® Horizon 5000 Automated Extractor

 

*The DryVap™ system has been discontinued. We recommend using the TurboVap® evaporation systems for achieving equivalent results.

Table 1. Extraction Method

Step

Solvent

Solvent Volume (mL)

Purge Time (s)

Pump Rate (#)

Sat. Time (s)

Soak Time (s)

Drain Time (s)

 

1. Condition SPE Disk

Methylene Chloride

15

60

2

1

20

30

 

2. Condition SPE Disk

Ethyl Acetate

11

60

2

1

20

30

 

3. Condition SPE Disk

Methanol

11

60

2

1

60

2

 

4. Condition SPE Disk

Reagent Water

9

30

2

1

5

5

 

5. Condition SPE Disk

Reagent Water

9

60

2

1

30

0

 

Step

Sample Flow Rate (#)

 

 

Done Loading Sample Delay (s)

 

6. Load Sample

 

2

 

 

 

45

 

 

Step

Dry Time (s)

 

Pump Rate (#)

 

N2 Blanket

 

7. Air Dry Disk Timer

60

 

 

6

 

 

Off

 

Step

Solvent

Solvent Volume (mL)

Purge Time (s)

Pump Rate (#)

N2 Blanket

Sat. Time (s)

Soak Time (s)

Elute Time (s)

8. Elute Sample Container

Ethyl Acetate

8

60

2

Off

1

30

45

9. Elute Sample Container

Methylene Chloride

8

15

2

Off

1

30

45

10. Elute Sample Container

Methylene Chloride

8

15

2

Off

1

30

45

11. Elute Sample Container

Methylene Chloride

8

15

6

Off

2

30

60

 

Gas Chromatography Mass Spectrometry System

Cartridge

ZB Semi-volatiles, 30 m x 0.35 mm i.d., 0.25 μm film thickness (Phenomenex)

Flow Rate

9 psig helium ramped up with the oven temperature to maintain a constant flow

Temperature Ramp

 

Temperature (°C)

Rate (°C/min)

Hold (min)

 

60

0

2.00

 

270

20

0.00

 

320

6

3.00

 

Method summary

  1. Obtain six 1-liter samples of drinking water.
  2. Add dechlorinating agent to each 1-liter sample.
  3. Acidify each 1-liter water sample to pH <2 using concentrated HCl.
  4.  Add surrogate and internal standard compounds into samples.
  5. Start extraction method shown in Table 1 and collect extract (≈32 mL).
  6. Add extract to the DryDisk® holder and start automated drying and concentration process on the DryVap™ system (the DryVap™ system automatically dries and concentrates extract to 0.9 mL).
  7. Quantitatively bring extract volume to 1.0 mL using methylene chloride once the extracts are evaporated to less than 1 mL.
  8. Add external standard into the 1-milliliter extract.
  9. Transfer the extract to a 2.0 mL GC vial.
  10. Analyze by GC/MS.

The GC/MS used was a 6890 GC with a 5973 MSD (Agilent).
Total Run Time: 23.83 minutes
Injection Method: 1.0 μL injected, Temperature 280°C , Pulsed splitless

  • Inlet pulse pressure 25.0 psi for 1.00 min
  • Purge flow to split vent 50 mL/min for @2.00 min


Results and discussion


Six replicate laboratory fortified blanks (LFBs) were extracted as described in Chinese method SL 392-2007, following the procedure in the method summary in this note. Drinking water was spiked with standards and surrogates at a concentration of 5 μg/L.
The results are shown in Table 2 for each of the six replicate samples.

Table 2. Recoveries of Spiked Analytes in Drinking Water

Compound

Sample 1 (% Rec)

Sample 2 (% Rec)

Sample 3 (% Rec)

Sample 4 (% Rec)

Sample 5 (% Rec)

Sample 6 (% Rec)

AVG

RSD

Acenaphthene d10

70.0

73.0

77.6

81.0

75.0

76.8

75.6

5.06

Phenanthrene d10

75.6

84.2

88.0

95.4

84.4

85.8

85.6

7.49

Chrysene d12

77.0

83.8

90.2

98.2

84.0

86.0

86.5

8.25

2,4-Dinitrotoluene

113

112

109

110

112

109

111

1.44

2,6-Dinitrotoluene

113

112

108

109

113

107

110

2.49

2-Nitro-m-xylene

95.6

95.6

90.0

87.0

98.0

94.6

93.5

4.41

4,4’-DDD

94.4

93.8

94.0

90.4

94.0

93.6

93.4

1.58

4,4’-DDE

91.4

89.8

92.8

87.2

90.4

89.6

90.2

2.09

4,4-DDT

94.4

93.8

94.0

90.4

94.0

93.6

93.4

1.58

a-BHC

99.2

95.2

97.8

93.8

98.4

96.6

96.8

2.11

Acenaphthene

110

109

101

105

109

106

107

3.08

Acenaphthylene

95.6

95.6

93.8

90.2

98.0

97.0

95.0

2.91

Acetochlor

108

109

104

103

107

108

106

2.11

a-Chlordane

92.8

91.4

93.4

88.8

93.0

92.0

91.9

1.83

Alachlor

99.8

97.0

99.0

95.2

98.8

98.4

98.0

1.70

Aldrin

85.0

81.6

84.6

81.2

82.4

83.6

83.1

1.90

Ametryn

98.6

95.2

96.8

93.8

98.0

96.4

96.5

1.84

Atrazine

104

98.0

100

96.6

98 100

99.4

2.48

 

b-BHC

99.0

96.8

98.6

96.0

99.6

97.0

97.8

1.46

Benz(a)anthracene

89.2

87.6

89.0

85.4

88.6

88.8

88.1

1.63

Benzo(a)pyrene

73.8

74.0

76.2

70.4

74.8

75.4

74.1

2.72

Benzo(b)fluoranthene

95.0

93.8

95.4

89.0

92.0

92.0

92.9

2.56

Benzo(ghi)perylene

95.0

93.0

95.2

91.4

93.0

93.2

93.5

1.52

Benzo(k)fluoranthene

91.0

88.8

91.8

89.0

92.2

92.4

90.9

1.76

Bis(2-ethylhexyl)adipate

95.4

92.6

93.4

90.8

94.4

94.2

93.5

1.73

Bis(2-ethylhexyl)phthalate

96.0

94.0

95.0

92.4

94.8

95.4

94.6

1.34

Bromacil

105

103

104

100

104

102

103

1.81

Butaclor

98.0

98.4

97.6

92.6

100

97.4

97.4

2.61

Butyl benzyl phthalate

100

99.0

98.6

93.4

101

99.0

98.5

2.69

Butylate

103

101

101

97.0

104

101

101

2.41

Caffeine

82.4

88.8

77.2

78.0

84.8

79.0

81.7

5.52

Chlorobenzilate

101

101

99.2

95.4

104

102

100

2.84

Chloroneb

112

110

114

111

113

109

111

1.62

Chlorothalonil

107

105

106

101

107

105

105

1.91

Chlorpropham

125

122

119

122

122

121

122

1.56

Chlorpyrifos

101

95.0

101

96.2

98.6

98.2

98.3

2.45

Chrysene

92.8

90.8

92.8

89.2

91.8

91.6

91.5

1.49

cis-Permethrin

97.8

96.4

96.4

94.4

95.8

96.0

96.1

1.14

Cyanazine

104

99.4

101

98.2

101

100

101

1.93

Cycloate

113

111

110

110

113

110

111

1.32

Dacthal

99.0

96.4

98.6

95.2

99.6

97.8

97.8

1.71

d-BHC

99.6

97.6

101

96.0

100.2

97.4

98.6

1.86

Diazinon

92.8

89.8

90.2

88.0

91.6

91.0

90.6

1.82

Dibenz(ah)anthracene

92.2

91.6

92.2

92.8

91.6

95.6

92.7

1.62

Dichlorvos

119

115

110

112

119

115

115

3.11

Dieldrin

95.6

95.2

95.0

90.2

95.8

93.6

94.2

2.25

Diethyl phthalate

115

114

113

112

114

111

113

1.34

Dimethoate

81.0

90.0

72.8

77.2

82.2

80.0

80.5

7.11

Dimethyl phthalate

109

107

107

106

109

105

107

1.32

Di-n-butyl phthalate

101

98.8

100

95.0

99.6

98.2

98.9

2.20

Di-n-octyl phthalate

99.6

96.0

98.6

94.8

97.6

97.4

97.3

1.78

Diphenamid

101

98.0

98.8

95.4

100

97.6

98.5

2.05

Disulfoton

96.4

92.8

96.2

91.8

97.4

97.4

95.3

2.54

Disulfoton sulfone

102

103

99.6

97.4

105

102

102

2.64

Endosulfan I

97.8

92.8

97.0

93.4

97.0

93.4

95.2

2.37

Compound

Sample 1 (% Rec)

Sample 2 (% Rec)

Sample 3 (% Rec)

Sample 4 (% Rec)

Sample 5 (% Rec)

Sample 6 (% Rec)

AVG

RSD

Endosulfan II

96.6

97.6

98.8

92.2

98.6

95.2

96.5

2.58

Endosulfan Sulfate

99.2

99.8

98.8

95.4

101

100

99.1

2.06

Endrin

115

111

110

105

114

111

111

3.13

Endrin Aldehyde

88.8

88.4

84.4

81.6

89.4

84.8

86.2

3.60

Endrin Ketone

97.6

97.6

98.8

91.8

101

98.2

97.5

3.19

EPTC

107

104

99.4

99.4

107

104

103

3.24

Ethoprop

119

119

112

116

118

115

117

2.28

Etridiazole

107

107

105

103

110

106

106

2.27

Fenamiphos

116

119

108

109

119

117

115

4.45

Fenarimol

104

104

96.6

96.8

102

103

101

3.28

Fluoranthene

98.2

95.2

97.8

93.8

96.6

95.2

96.1

1.77

Fluorene

104

104

102

100

105

103

103

1.73

Fluridone

110

113

103

104

112

110

109

3.65

g-Chlordane

90.6

89.4

90.8

88.2

91.4

90.2

90.1

1.27

Heptachlor

96.4

91.0

95.6

92.6

94.2

94.8

94.1

2.12

Heptachlor epoxide A

96.8

92.2

95.2

91.0

93.8

92.4

93.6

2.29

Heptachlor epoxide B

96.2

95.2

98.0

92.6

96.8

94.0

95.5

2.05

Hexachlorobenzene

92.0

87.2

91.0

87.2

89.8

91.0

89.7

2.29

Hexazinone

100

100

98.0

94.6

101

100

99.1

2.49

Indeno(1,2,3-cd)pyrene

94.0

94.4

95.2

91.0

92.6

93.4

93.4

1.59

Isophorone

109

101

96.6

97.4

107

100

102

4.91

Lindane (g-BHC)

99.4

95.6

99.8

95.2

99.4

96.4

97.6

2.17

Malathion

117

116

108

110

115

117

114

3.43

Merphos

93.4

90.6

104

101

108

108

101

7.32

Methoxychlor

100

99.8

98.6

94.2

99.2

97.8

98.3

2.22

Methyl paraoxon

98.8

97.2

97

93.8

94.6

93.4

95.8

2.27

Metolachlor

102

99.4

100

97

102

99.4

100

1.98

Metribuzin

100

96.4

96.2

94.6

99.4

97

97.3

2.22

Mevinphos

127

124

116

122

126

122

123

3.24

MGK-264-A

96.0

94.6

95.8

92.6

97.2

96.0

95.4

1.66

MGK-264-B

96.0

94.6

95.8

92.6

97.2

96.0

95.4

1.66

Molinate

111

109

108

107

111

107

109

1.64

Naphthalene

89.6

89.8

86.8

80.2

92.0

90.4

88.1

4.81

Napropamide

102

101

98.6

94.2

103

100

99.8

3.09

Norflurazon

99.6

100

96.8

93.8

102

99.6

98.7

2.93

Pebulate

108

106

104

102

109

105

105

2.50

Pentachlorophenol

106

104

105

102

108

107

105

1.98

Perylene-d12

79.2

78.4

81.4

76.6

79.4

80.6

79.3

2.13

Phenanthrene

97.4

94.2

96.0

91.4

97.4

95.8

95.4

2.39

Prometon

79.2

76.6

79.8

73.4

75.2

77.6

77.0

3.15

Prometryn

99.4

95.6

97.4

94.4

97.8

97.0

96.9

1.80

Pronamide

100

96.6

98.8

95.4

99.4

98.0

98.0

1.79

Propachlor

115

112

112

112

113

110

112

1.37

Propazine

103

100

100

98

101

100

101

1.76

Pyrene

96.2

95.2

95.8

90.8

96.4

95.4

95.0

2.20

Pyrene-d10

95.8

94.6

95.6

90.2

96.8

93.8

94.5

2.47

Simazine

98.8

95.8

98.0

95.0

97.4

94.0

96.5

1.93

Simetryn

99.8

97.0

102

99.6

98.4

102

99.9

2.07

Stirofos

112

111

105

104

114

114

110

3.96

Tebuthiuron

120

121

110

118

120

118

118

3.25

Terbacil

119

117

112

111

118

116

115

2.96

Terbufos

122

114

121

110

113

106

115

5.43

Terbuthylazine

101

98.4

98.0

96.0

99.4

98.0

98.5

1.81

Terbutryn

101

98.4

100

96.2

100.6

99.6

99.3

1.74

Terphenyl-d14

130

119

111

102

119

116

116

7.97

Compound

Sample 1 (% Rec)

Sample 2 (% Rec)

Sample 3 (% Rec)

Sample 4 (% Rec)

Sample 5 (% Rec)

Sample 6 (% Rec)

AVG

RSD

Thiobencarb

101

99.6

95.4

96.8

98.6

99.8

98.6

2.16

trans-Nonachlor

92.6

92.0

92.6

89.4

92.8

91.2

91.8

1.42

trans-Permethrin

94.4

92.0

94.2

90.0

93.2

92.4

92.7

1.76

Triademefon

102

99.4

97.2

92.6

98.6

97.0

97.8

3.25

Tricyclazole

99.6

98.4

88.8

89.6

97.6

95.2

94.9

4.88

Trifluralin

110

108

107

107

108

107

108

1.11

Triphenylphosphate

101

101

99.0

95.0

102

101

99.8

2.58

Vernolate

106

105

101

100

109

104

104

3.09

 

The recoveries are within 70—130% in all cases for the more than 100 compounds measured. The precision was excellent and the relative standard deviations ranged between 2-3% for most of the analytes. Table 3 compares selected analyte data from method SL 392-2007 with the data obtained in this work. I t can be seen that the data obtained with the Biotage® Horizon and the C18 disk are equivalent or better in terms of spike recoveries and relative standard deviation.

Table 3. Comparison of Data from the Method to that Acquired Here

 

 

SL 392-2007

C18 HC Disk Biotage® Horizon 5000

 

% Recovery

%RSD

% Recovery

% RSD

2,4-Dinitrotoluene

99.3

2.94

111

1.44

Benzo(k)fluoranthene

83.1

2.17

90.9

1.76

Chrysene

85.8

1.00

91.5

1.49

Dichlorvos

121

3.01

115

3.11

Dieldrin

81.9

7.37

94.2

2.25

Heptachlor epoxide B

77.7

7.87

95.5

2.05

Pyrene

80.2

6.02

95.0

2.20

 

Conclusion


The Atlantic high-capacity C18 disks provided excellent recovery of the large suite of compounds extracted in water. The compounds included in the method had excellent performance and an average recovery of 98.8% was achieved with a 5 μg/L spike. The spike recovery criterion of 70-130% was achieved in all cases.

The Biotage® Horizon 5000 system provided uniform performance and a hands-off approach to the extraction step. The reproducibility of the six runs was excellent and the average of the relative standard deviation values was 2.6%. The Atlantic high-capacity C18 disk allowed even more water soluble compounds, such as caffeine, to be successfully retained with good recovery, further demonstrating the utility of solid phase extraction. In combination with the Biotage® Horizon 5000, the samples were reliably extractedwith excellent precision. This data demonstrates that the equipment used in this study is capable of fully automating disk SPE technology for Chinese Environmental Method SL 392-2007 and that the resulting data is both accurate and precise.


References

  1. China Method SL 392-2007, Determination of Semi volatile Organic Compounds in Water by Solid Phase Extraction- Gas Chromatography (GC/MS).


Literature number: AN116-HOR

Related literature